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CC
an a proof be objectively beautiful? It is not a
surprising claim that the search for beauty, both in
theorems and in proofs, is one of the great

pleasures of engaging with mathematics.
Quite often the similarity to beauty in the visual arts or

music is made explicit:

The mathematician’s patterns, like those of the
painter’s or the poet’s, must be beautiful; the ideas,
like the colors or the words, must fit together in a
harmonious way (G. H. Hardy [2]).

Why are numbers beautiful? It’s like asking why is Bee-
thoven’sNinthSymphonybeautiful. If youdon’t seewhy,
someone can’t tell you. I know numbers are beautiful. If
they aren’t beautiful, nothing is (Paul Erd}os [3]).

A scientist worthy of the name, above all a mathe-
matician, experiences in his work the same
impression as an artist; his pleasure is as great and of
the same nature (H. Poincaré [8]).

Theorems can be ‘‘deep,’’ ‘‘profound,’’ ‘‘surprising,’’ or
‘‘derivative’’ and ‘‘boring’’; conjectures can be ‘‘daring,’’
‘‘bold,’’ ‘‘natural,’’ and sometimes ‘‘false for trivial reasons’’
[1]. Proofs can be ‘‘beautiful,’’ ‘‘unexpected,’’ ‘‘clean,’’ ‘‘tech-
nical,’’ ‘‘elementary,’’ ‘‘lovely,’’ ‘‘nifty,’’ ‘‘hand-wavy,’’ or even
‘‘impudent’’ (Littlewood’s description [6] of Thorin’s proof of
the Riesz–Thorin theorem). While mathematical tastes are
diverse, those working within the same mathematical area
tend to have some consensus as to whether a theorem, proof,
or conjecture is beautiful (or, say, surprising).

But where do these intuitions come from? Are they the
product of mathematical socialization or something deeper
about how human beings universally perceive mathemati-
cal beauty? Is Thorin’s proof truly impudent, or does one
learn to call it that as part of one’s education? This paper
describes a psychological experiment designed to give a
deeper understanding of the issue; we hope that many
more such experiments will follow.

Setting Up the Experiment
There are two main challenges to any such investigation:

1. finding a way to formulate this effect, if it exists, in such
a way that it is quantitatively measurable,

2. and ensuring that the effect is authentic and not an
artifact of mathematical socialization (something that
one is ‘‘taught to pretend’’ during one’s education).

The second point alone already rules out a great number of
obvious approaches (for example, having students give
descriptions of the character of mathematical arguments).
We chose to use a comparative approach: participants in
our study were shown four mathematical arguments (given
below) and then either asked to observe four paintings or
listen to four pieces of music; on a scale of 0 to 10, we
asked them to rate the similarity between the piece of
mathematical reasoning and the work of art. We will now
give a more in-depth discussion of the experiment and then
describe its results.
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Beautiful Reasoning
We selected four classical pieces of elementary mathe-
matical reasoning based on their beautiful or surprising
character and their immediate accessibility to those without
mathematical training. Most readers have likely encoun-
tered these arguments before:

1. Geometric series.
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We can see this by cutting a square with total area 1 into
little pieces.
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2. Gauss’s summation trick. A quick way to compute

1 þ 2 þ 3 þ 4 þ � � � þ 98 þ 99 þ 100 ¼ 5050

is as follows. Write the total sum twice and add the
columns:

1 + 2 + 3 + 4 + · · ·+ 98 + 99 + 100
100 + 99 + 98 + 97 + · · ·+ 3 + 2 + 1

101 + 101 + 101 + 101 + · · ·+ 101 + 101 + 101

This yields a total of 100 times 101 (giving 10 100), and half
of that is exactly 5050.

3. The pigeonhole principle. In any group of five people,
there are two who have the same number of friends within
the group. We can see this as follows: suppose there exists
somebody who is friends with everybody else. Then every
person in the group has either one, two, three, or four
friends (because everybody has at least one friend). Since
there are five people but only four possible numbers of
friends, one number has to appear twice. If nobody is
friends with all other people, then everybody has either
zero, one, two, or three friends; again, since there are five
people, one number has to appear twice.

4. Faulhaber’s formula. The sum of consecutive odd num-
bers always adds up to a square number:

1 ¼ 12

1 þ 3 ¼ 22

1 þ 3 þ 5 ¼ 32

1 þ 3 þ 5 þ 7 ¼ 42

The reason is explained in the picture below: adding the next
odd number creates a suitable layer for the next square.

Beautiful Art
We selected superficially similar pieces of art within each
category: a ‘‘classical’’ piece for solo piano for music, and
nineteenth-century landscape paintings for art. The paint-
ings are displayed throughout the paper; for music, we
used the first 20 seconds of the following four works:

1. F. Schubert: Moment Musical no. 4, D. 780 (op. 94),
played by D. Fray

2. J. S. Bach: Fugue from Toccata in E Minor (BWV 914),
played by G. Gould

3. A. Diabelli, Waltz (the theme of Beethoven’s Diabelli
Variations, op. 120), played by G. Sokolov

4. D. Shostakovich, Prelude in D-flat Major (op. 87,
no. 15), played by A. Brendel

Though all four pieces are written for solo piano, they have
very different characters. Schubert’s piece, among the most
frequently performed of his works, is often formally
compared to Bach, but it is more romantic in style; the
Bach fugue, rhythmic and fast-paced, has an ‘‘urgent’’ feel
to it and is often grouped with those of Bach’s works that
show an Italian influence. Diabelli’s waltz, famously
dismissed by Beethoven as a Schusterfleck (literally a
cobbler’s patch, a disparaging term for a piece of music
‘‘cobbled together’’ by repeating a melody identically one
step higher), is a simple classical waltz (William Kinderman
[5] speaks of ‘‘the banality of the theme,’’ which is ‘‘trite’’
and ‘‘insufferably so when repeated’’). Finally, Shostako-
vich’s prelude, part of his cycle of 24 preludes and fugues
in all keys—inspired, on the 200th anniversary of Bach’s
death, by that composer’s two books of the Well-Tempered
Clavier—is described by Mark Mazullo [7] as ‘‘blatantly
insincere,’’ an ‘‘artistic non-entity’’ that is ‘‘cracking jokes.’’

All of the paintings feature realistic romantic landscapes.
We invite the reader to repeat the experiment: given these
four pieces of music and these four paintings, in which
order do they best capture the spirit of the four mathe-
matical arguments? In an informal survey of colleagues,
most reported feeling slightly ill at ease and that they
considered the question somewhat ill posed (some whom
we polled used stronger language). Many of our surveyed
colleagues also remarked that matching paintings to math
seemed easier than matching music, while others took the
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opposite point of view (including the second author, who
would argue that the Diabelli waltz describes the geometric
series perfectly but feels less confident in assigning a
painting to it; incidentally, he is also terrible at drawing and
has a hard time appreciating the visual arts).

Outcome of the Experiment: Music
Participants were recruited from the online crowdsourcing
platform Amazon Mechanical Turk (N ¼ 299) and were
from the United States. Of these, 90 had taken university-
level math courses above calculus. Participants read the
four mathematical arguments, were then asked to reflect on
the argument and to rate the similarity to the four 20-sec-
ond clips of music described above on a scale from 0 (not
at all similar) to 10 (very similar). The arguments as well as
the musical clips were presented in a fully randomized
order and on separate pages. After the main task, a memory
check question determined whether the participant had
paid sufficient attention to the material, and 73 participants
were dismissed at that stage. This online sample was
complemented by 28 undergraduates and four professional
mathematicians. Indeed, most professional mathematicians
we asked were slightly puzzled by the experiment; the
authors’ sanity was questioned more than once.

The results turned out to be far from random: taking all
pairwise correlations between the N ¼ 219 participants of
the MTurk sample who gave nonidentical ratings across the

items, correlation with the mean (of all samples but the
selected participant) was significantly more often positive
than it was negative (145 out of 219, the p-value is
p\0:001). This was true for both participants who had
taken higher mathematics classes ðp ¼ 0:01Þ and those who
had not ðp\0:001). More drastically, when asked the rather
unusual question whether a geometric series sounds more
like Bach or Schubert, our subjects responded in a way that
was very clearly not random (highly statistically significant,
if we want to sound scientific).

Outcome of the Experiment: Paintings
We recruited another N ¼ 300 participants from Amazon
Mechanical Turk (of which 99 had taken higher math
classes and 201 had not). Of these, 67 participants were
dismissed after failing the memory check question, and one
was eliminated due to incomplete ratings. This was sup-
plemented by eight professional mathematicians (a minor
byproduct of this study is the insight that mathematicians
do not like to fill out psychological surveys). While the
connection between mathematics and music is often dis-
cussed, the same is not true for paintings, and this clearly
shows in the similarity ratings, which were overall lower
than for music: apparently, paintings are not as good at
capturing the spirit of a proof as music.

However, the association between different mathemati-
cal arguments and different works of art is very consistent,
indeed, even slightly stronger than for music. The correla-
tion between a participant and the general mean (of all
samples except the selected participant) is positive more
often than negative (156 out of 211, the p-value is
p\0:001). Cronbach’s alpha, a statistical test for the relia-
bility of a psychometric test, indicates strongly consistent
responses across participants (a ¼ 0:93). A much more

Figure 1. Albert Bierstadt: Looking Down Yosemite Valley,

California (1865).

Figure 2. Albert Bierstadt: Storm in the Rocky Mountains

(1866).

Table 1. Amazon MTurk results (N = 226): bold denotes largest or close-

to-largest degree of similarity

Schubert Bach Diabelli Shostakovich

Geometric series 4.76 4.39 4.36 4.62

Gauss’s summation trick 4.61 5.11 4.67 4.31

Pigeonhole principle 4.52 4.42 4.89 4.83

Faulhaber’s formula 4.32 4.59 5.04 5.06

Figure 3. John Constable: The Hay Wain (1821).
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extensive and complete discussion of the statistical aspects
is beyond the scope of this short report and can be found in
our paper [4].

What Does This Mean? What’s Next?
We have shown that people, both with mathematical
education and without, have the ability to recognize aes-
thetic aspects of mathematical arguments and that these
seem to be universal. The second author was once told
never to write a paper without a theorem, so here goes:

THEOREM. Proofs have a soul.

PROOF. Empirical. For a nonempirical proof, consult your

local Platonist. (

On a more serious note, the results are highly statistically
significant and raise quite a large number of interesting
questions (which we hope will be answered by many more
such experiments in the future).

• How does the effect depend on the type of art? Music
seems better at describing proofs than paintings, but the
effect is slightly more consistent for paintings; what
about sculptures, poems, or possibly even jokes and
puns?

• How does the effect depend on the age of the partici-
pant? How does it tie in with standard models about the
development of capacity for rational thought in children?

• Although these results clearly show that aesthetic intu-
itions about mathematics are not a product of
mathematical socialization, since the effects are robust
among laypeople without mathematical training, they
may nonetheless interact with culture in intriguing ways.
For example, might intuitions about music–math pairings
differ in cultures in which the Western canon plays a less
dominant role or in which different tuning systems are
more widely used?

• Does the effect depend on the type of mathematical
argument? Is an analytic inequality close to jazz? Is a
combinatorial counting argument more of a waltz?
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Table 2. Amazon MTurk results (N = 211): bold denotes largest or close-

to-largest degree of similarity

Yosemite Rockies Hay Wain Andes

Geometric series 3.51 2.99 3.30 3.05

Gauss’s summation trick 2.38 2.23 2.43 1.96

Pigeonhole principle 2.42 2.21 2.25 2.49

Faulhaber’s formula 2.97 2.75 3.21 2.44
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Figure 4. Frederic Church: Heart of the Andes (1859).
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